![]() The parts are said to be from a Franklin 6A-350-C2, 1430hrs, engine block with a rebuilt yellow tagged crank from Franklin Aircraft Engines, Inc in Fort Collins Co. for $5,500. I paid another $2,000 for new bearings/gaskets. I have a quote for about $1800 to rebuild the cylinders to new condition. The camshaft was to be reconditioned by Aircraft Specialties Services of Tulsa OK, but turned out to be a reject - see choices page for more comments. The oil pan was also rather strange. It fit but had a big open hole toward the front which I had to weld in with an aluminum disc. I suspect it was an older helicopter, or whatever, Franklin oil pan for shafts in front. The basic block cost is about $9,900. A brand new engine is about $16,400. So the savings is about $6K. The accessories - starter, carb, etc. are all extra (the total with my choice of accessories by 12/2003 came to $16,700 - not bad for a rebuilt engine.) With all the different parts and experimental accessories, this definitely is an "experimental" engine and not "certifiable". In my mind there is nothing wrong with it, just different. Why a 6 cylinder engine? I personally believe giant four bangers VW engines produce too much vibration resulting in early failure of engine components and other fuselage parts. Vibration is the worst enemy of mechanical parts. There is no sense in aiding that with a giant VW 4 cyl. A 6 cylinder is naturally smooth. I am using an in-flight adjustable Ivo prop. Ivo Prop Corp will not sell props for Lyc. IO-360 because of vibration problems. The continental IO-360 is an alternative 6 but more expensive than the Franklin.
Postbuild Notes:
Engine make Note: |
The engine mount is somewhat
patterned after Velocity Franklin engine mount that I have seen photos of with engine bed rectangular tubing.
The engine mount is shown with the welds completed with additional gusset reinforcements that
I felt were needed. The small triangle gussets were cut from a 3/16 stainless steel plate piece that
I got from the local welding shop. They do not stock 4130 steel that I ordered for the tubing and
the rectangle. My stress calculations show that the mount should bear about 10,000lbs (the mount,
not the firewall points) before breaking. Should be sufficient for a 350lb engine and a few
g's. Hope that my welds are decent.
I used a gas torch afterwards to smoothen out the mig weld beads and heated the weld joint areas
uniformly to red hot to dissipate any built up internal welding stresses. |
![]()
2004 Postbuild note: The little alternator simply did not stand up when using more than about 15A.
It quit several times on me - once I made a rush landing on batteries only. I purchased another
same sized (new) alternator rated at 45A from eBay. That one just fried on me - the windings all turned
black. My guess is that these small altenators are rated for temporary peak power and not for continuous
duty - the heat under the cowling probably doesn't help any. I got a couple more alternators
a 70A heavy duty unit off a Honda which was about 10 lbs, and another 60A unit from Van's Aircraft supply
at about 7 lbs. I first mounted the 60A unit since it had similar mountings to what I already had.
The 70A unit I still have but it has somewhat different mountings than my arrangement. So far I
haven't had problems with the Van's 60A unit at any power demand.
I use a dual battery, single alternator system with a symmetric charging circuit - click here for details I have since modified my alternator circuit. I placed normal alternator connections directly to the front larger battery and used one of the battery isolator diodes to charge the smaller rear battery from the large battery circuit. revised charging circuit - click here for details The Van's 60A alternator came with a warning not to use overvoltage circuits, since it can damage the regulator. But my engine monitor has an overvoltage alarm and I can simply switch off the alternator in that case. |
![]() |
![]() |
![]() |
![]() The ball bearing was purchased from Baumgardner and Sons, Cleveland, OH 44110, 216-531-2800 - part number 6204LL 7/8 (0.875 ID) (mfg part ref: 5204-11-7/8) 07/14/2005 Postbuild note: The previous mod lasted five years - 180 hours. On a recent inspection I found the outer roller bearing failed and I re-designed the unit with two ball bearings. I made the ball bearings removable rather than pressed in like previous time. |
![]() Postbuild Note: The oil separator did not seem to do much good. I removed it. I eventually tried a more expensive one - RMJ-Aero Air-Oil separator - which I hooked up to drain into a valve cover. The combination actually increased my oil consumption. So now (2006+) I do not use an oil separator. Not sure whether its my particular setup or just that oil separators simply are not what they claim to be. |
![]()
Update: The aluminum flange did not work out and I made one from several layers of glass
and bonded it to the elbow.
|
The LightSpeed Engineering (LSE) dual ignition system direct crank sensor circuit plate does
not fit my configuration - too large and would interfere with the IVO prop electric control.
The factory plate was originally designed to fit
the Lycoming engine
and not the Franklin setup
inspite of their assurance that it can fit the Franklin. If I knew this beforehand I might
have gone with the ElectroAir
ignition system which uses the magneto gearing hole to trigger
the spark. However LSE did send me the Hall effect sensor circuit elements to fabricate
my own. Here is my attempt at it. I made two smaller plates out of fiberglass: the front one (3 layers
of 900 E glass) on which the sensors and wires go and the back one (5 layers of 900 E glass) for more support.
The two will then sandwich a layer of flox which should be pretty strong.
In third photo, the cured plate is shown trimmed. Loose (OD but exact 1/4 ID) steel bushings
were put into the mounting holes floxed in, allowing exact axial and radial
adjustment for the sensor plate. Radial distance and axial distance to the hall
effect sensors must be equal all around. The thicker plate (right) side (impossible to
make perfect) is clamped down with a washer over the flox while the axial distance to
the left side is adjusted (using wood slat) until the axial distance to hall effect
sensors (little black dots - hard to see) is equal all around. The fourth photo shows the final plate assembly with the magnet holder. It is about 6 inch diameter, 3/8" thick, made from 3 + 5 layers of E-glass sandwiching a layer of flox encasing the connecting wires ("circuit"). The aluminum magnet plate is welded to a 180 degree of round tubing which is clamped to the crankshaft. The sliding freedom and "fingers" allow for more precise adjustment of magnet positions. The two flat head machine screws are inside steel machine bushing floxed/cured more precisely into place. The extra tabs on the plate in second photo were intended for additional rigidity support but turned out not to be needed and were cutoff. (The green original factory plate is shown on the side for size comparison.) Unless LSE comes up with a smaller sensor circuit plate and magnet holder for the Franklin to not interfere with other propeller controls, I would not recommend the LSE EI. This was tremendous amount of work. But I already paid "non-refundable" $1880 for the unit through Aircraft Spruce.
I have indicated my setup to LSE manager who was concerned about the
magnet holder and the clamp holding it. The cheapest SS clamp I have
can hold over 500 lbs of force. At 2800 rpm the centripetal force on
the 1.4 oz holder is only about 30 lbs. But as a safety measure I used
HI-TORQUE - Heavy Duty Breeze clamps having about
2000 lbs of clamping force capacity. That should be sufficient safety
factor.
08/18/05 Postbuild note: At about 75 hours the
engine developed some roughness, especially at lower RPM being harder
to start. The double ignitions were uneven, with more roughness when
the front battery ignition switch was turned off. The plugs were
almost new. I contacted Klaus of LSE who suggested to look into plug
gapping and mixture. However I traced it down to a shorted out coax
ignition cable. The RG-58 cable that came with the original kit did
not stand heat too well. I noticed the newer LSE ignitions come with
teflon RG-400 type instead of RG-58. I replaced the cables with RG-400.
That was an obvious defect in the original kit. It would have been good to
at least notify LSE kit users about the problem or even post something on
LSE website. But perhaps it avoids an expectation of free part
replacement.
03/09/11 Postbuild note:
LSE is offering a newer
LSE mini crank sensor to reduce the size for Franklin and other engines.
Hoever the new setup is still huge bulky compared to my own custom build and would
interfere with prop controls like IVO.
|
The carb air duct system is growing but is taking a long time. With no pre-mold every
piece/shape has to be glassed/fabricated individually. Shown upside down it will be installed in
the bottom NACA scoop - since I have nothing else to use the scoop for. The duct system
shows the hot air control flap and will have a flap to bypass the filter at altitudes away from
ground level dust.
11/27/03 second late photo shows the installed duct system from the bottom.
The front part was cutout since it was not needed. A properly shaped cover
encloses the system so that the air is directed from outside to inside of
air filter to inside of the carb duct system.
The filter is FRAM AC148 for a 300ci 6cyl Ford truck engine.
The Franklin is 350ci. But keep in mind that an automotive engine revs up to about
5000 rpm, while the top on the Franklin is about 2800rpm. So comparatively the
filter should have about ( (5000 x 300) / (2800 x 350) ) x 100% = 150% air
design volume flow requirement for the Franklin. In view
of that I did not bother with the complex flap system to bypass filter at
altitudes.
The filter in the photo is held in place by a short glassed ring
surrounding the filter "top". The third and fourth photo show side view of setup
and the inside of the bottom cover.
|
![]() |
There are two heat muffs, one for carb heat (LS) and one for cabin heat
(RS) seen on top and using the overhead console tunnel. After trying
standard suppliers route I eventually had to weld my own using a few
pieces of SS straight and elbow tubing from Woolf Aircraft Supply
for about $84. Before that I tried a muff from Velocity supposedly made specifically
for the Franklin engine but turned out to be the aluminum Cesna type muff that Velocity
got from Aircraft Spruce and simply marked up $20. I got
a local welder to weld an alumnum elbow (I am still not good at welding thin aluminum) but
welded it at wrong angle - the whole thing was near $100 and did not work. The stainless steel
muffs I welded toghether worked out fairly good with the added benefit that it was attached
to the SS exhaust with just a few spot welds - no clamps needed.
![]() ![]() |
![]() The best price I found for Odessey batteries is at batteries4everything.com
I found some oil leaks after running the engine. The main one, I fixed later, was around the oil temperature sensor which
I mounted in a too small pipe thread shaft. I fixed that by putting some J-B Weld on the threads. The other
were static leaks near front of engine oil pan and some on bottom where the plate caps were. But these added up to
about 1 drop a day so, while annoying, I did not think it was worth taking the engine out to fix. I put a small hole near
bottom of the carb cover back of the cowling so that the drops will drip through one spot.
|
![]() |
And here is another idea for making the upper cowling part. Make a thin single 9oz S2 layer and
let it cure. After curing it is very flexible but strong enough to stay in shape that you
support it in and will hold the next layer of glass which will stiffen into shape. No mess with
foam forms. (The bottom part has already set and removed).
![]() ![]() |
![]() |
![]() |
![]() |
![]()
06/09/04 Post build update: |
And now the left side cowling wing extensions. Much faster since
I know how to do it and less complications without the oil filter/cooler
assembly. The right side shows the top exit port for the oil cooler.
The bottom entry being a small NACA scoop. The factory prototype
has a large under-wing scoop for the oil cooler. I am counting that
the exit port being closer to the prop will generate a lower pressure.
I'll have to do something to taper the end of the cowling a little more
near the prop. It looks a little too boxy.
|
![]() |
![]()
Just a diversion here regarding the 7781 E-Glass.
I got some 7781 E-Glass from fibreglast.com to try it out. It is somewhat
comparable in strength to the KLS popular 9 oz S2 glass.
But the stuff is much more dense and about half the
thickness of the S2. What that means is it absorbs much less
epoxy for approximately same strength - the strength is more in the fiber
than epoxy. This is important for a beginner builder who tends to put more
epoxy than necessary and add to weight. I wish I found out sooner about such
cloths and could have used them more to lighten the construction. |
![]() |
April 2010 update. I sold the IVO prop in 2009 trying to experiment eliminating a persistent vibration I had.
I purchased a two blade Felix prop from Fred Felix and also ordered a more expensive three blade Catto.
Plan to use the Catto for normal use and the Felix as a spare. The Felix prop has a good climb with 2500 static RPM but maxes out at about
155 kts. It is a wood prop and can easily be dinged with grit so I had it covered in carbon fibre by Lonnie Prince
of Prince Aircraft.
Lonnie does a variety of prop services beside manufacturing his "P-TIP Propeller" design. The Catto prop is a strong fiberglass/carbon-fibre prop which initially gave me only about 2100 static RPM. I returned the prop and Craig removed about 1.5" from the diameter to give 2400 static RPM.
This year I gave close attention to the vibration problem and tried enlarging exhaust pipe cowling outlets.
I also put more effort into propeller balancing. In 2009 I splurged $1500 and purchased a DynaVibe electronic balancer.
A few years before I paid $350 for the IVO prop dynamic balancing and they did not improve anything. So I figured it would
just take a few balancing jobs to justify the purchase and I can probably resell the balancer someday.
Below you can see the mounted Catto prop, Felix prop with the carbon fiber cover and the result of recent balancing effort
on the Catto. I managed to get 0.00 ips adjustment with the DynaVibe on the Catto. For some reason IVO props are not as easily balanced as fixed props. In 2009 I modified the cowling to open end. It was also part of an effort to locate the vibration - possibly some "aerodynamic effect". Turns out it did not make a difference in vibrations but made a signifficant difference in engine cooling. The cylinders are running about 20C cooler now. |