![]() |
![]() |
Trunion plate hole(s) are cutout (showing left side). The small
hole is for portrusion of a nut behind plate.![]() ![]() |
![]() |
Now lets see.... Instructions: level fuselage and level landing gear strut
until it is perfectly vertical. But how do you make it vertical if it
has a deliberate 8 degree forward angle? Guess it meant that it should
be vertical in a forward vertical plane. You cannot simply put a level
to the strut since it is slanted and leveling it in the forward
plane would be a function how well you place the level to the strut
- which is difficult. But wait... the vertical plane should be same distance
from front of fuselage as from spar center. So using a verticall level from
front you should be able to line up the strut to be vertical. A couple of bolt
holes were drilled through the strut to hold strut in position for flox
application (see next paragraph).
![]() ![]() |
But before strut leveling above is done, the strut plates were tilted so that both struts were
approximately in the same plane and the gap behind plates is later filled with flox.
The flox is necessary since the vertical angles of the trunion pins are not perfectly
the same vertical angle AND the forward strut surface is not perfectly flat with
the plate. Simply bolting the plates to the strut will introduce unequal
streses on both plate and strut. The flox is prevented from binding to the
plates with some clear plastic packing tape on back of plates.
As seen in second shot below after floxing, curing and removal of the plate,
the flox forms a perfect mating surface to the trunion plate so there
are no uneqal streses due to bolting.![]() ![]() |
![]() |
![]()
|
![]()
OK. Got the things compressed (04/04/02). It took the plane weight and the force of about 3 tiedown straps
to force sufficient movement for the screws to be where they should be. |
![]() The spring connected to the LS of cylinder and the RS mounting bolt is my effort to design emergency gear release. Plan to install a hydraulic bypass valve if the electric hydralic pump fails, so that gravity and the spring (which helps to snap the gear into lock position) will help to lower the gear. Another spring will be installed in the nose gear - something else may have to be done too since the NG lowering is against the airstream. |
![]() 12/23/2004 Post build note: You may have noticed that the actuator on the left is different from original above. I have replaced all 3 brass "Cylinders & Valves" actuators - two main ones supplied with kit - with steel body actuators from Custom Actuators. The steel ones have a 5000 psi working pressure while the brass ones are 1500psi. Because of that I cranked up the hydraulic force to 1500 psi and reduced the main RG actuators from 1.5" to 1.25" bore. I also saved about 4 lbs weight since the steel actuators are lighter. All this actuator experimenting, and finally getting it right, cost me an extra $800. |
![]() You can see the re-welded job in the post build photo above. |
07/24/06 Post build note: After my April 2006 gear failure accident
I redesigned and reinforced the upper brace pins and also replaced the
slightly bent main trunion pins with 7075T651 high strength aluminum alloy.
The left photo shows the revised design with the machined pin replaced
with a through bolt and an extra bracket around the arm to the bolt.
The lower right inset shows the original pin and the broken one. It is a
simple machined unit with a nut and washer but failed in shear.
The right photo shows the picture from top on left showing the main trunion
new through bolt position. This allows me to simply replace the bolt
with new ones periodically - say every 100 hours.
![]() ![]() |
![]() |
And getting carried away with aluminum connection blocks.... The Matco
brake fluid reservoir comes with a mounting bracket attached to the
filler cap and the outlet is on bottom. That means you would have
to disassemble the thing to put brake fluid in. Instead I mounted
the thing on top of a aluminum connection block I made from 5/8 square
aluminum tubing and welded a mounting bracket to it, so that the filler
cap can now be used in normal fashion.
If you are working on your project, I could possibly make aluminum
connection block(s) for you for a nominal cost. The mini lathe and the mig
welder come in handy for shaping/welding aluminum. |
![]() |
07-01-02 LS RG update:
After hooking up RG retract circuit and connecting to inside switch and starting
up the pump, the aluminum hydraulic distribution block on RG LS was leaking at the set screws.
I replaced the block with another I then made, but it still leaked around the large set screw. Apparently
the pressure caused the hole around the set screw to distort. A larger chunk of aluminum might
have done the job but i decided to replace the assembly with brass/steel plumbing pieces which
I will encase in glass/flox to similar block shape to fasten same way as the aluminum block. ![]() |
I just could not see that much advanatage of retracts if there are big gaping holes
on the underside of strakes. After spending eons figuring different ways,
I finally settled on a two piece combination that leaves only three small
gaps - one near bottom of wheel, another in middle which is required so that the
wheel can move up and down and the third near the pivot (seen when the wheels are retracted).
A total cover design would probably add 200 hours to construction and a lot of expense.
The two pieces were made from the cutouts left over from wheel well installation.
The lower one is held by the four wheel bolts through a aluminum plate that is
glassed in the center and another reinforcement connected to the lower strut bolt.
The upper one is held in place by two small T shaped brackets I welded to the strut.
This is where the MIG welder comes in handy since it can be used as a surface welder
not distorting the structure.![]() ![]() |
![]() |
![]() |
Emergency gear lowering:
The factory model has an emergency "blow down" system which I
haven't been able to get hold of. The photo shows two pressure release
valves (up/down) that permit the retracts to simply fall down by
gravity when hydraulic pressure is released. The main gear do
not seem to be a problem and the attached wheel covers are actually slanted
slightly outward to help the wheels separate under aerodynamic
pressure. But the front gear lowering is against the air stream and
would not likely come all the way down by itself. After mulling the
problem over for long time I've come up with a pulley/cable/lever
system that forces the front NG to come down the rest of the way into
locking position. The 4.5" flat idler pulley (from a farm supply
place) does not rotate with main NG pivot bracket except when the
cable is pulled and then the welded tooth pushes against the pivot
bracket and rotates it down. A spring tends to hold the pulley
in the retract position. The cable winch inside cabin is made up of the cable going
through a 5/16 OD steel greased tube from the FS-37 bulkhead to a
tie down strap ratchet mechanism (Wall-Mart) underneath the dashboard on passenger
side. The whole system is about 30 bucks plus some welding skills.![]() ![]() ![]() ![]() |
![]() A late note: In the photo you can see the hydraulics sticking up out after the strake was installed. I decided that it would be too hard to service the RG stuff just from below and cutout a cover shape on top (and a small one in front of the RG pivot). Both pieces are held down by screws. I made servicing a priority. |
Post build notes: (9/14/04) Do I recommend retracts? A number of SQ2000 builders opted for fixed landing gear rather than retracts. Some other opinions are either all pro's or all con's. Here are the pros and cons I can see.
Pros:
Cons: (9/16/05) So far I had to replace 3 springs after a couple of hard landings. One problem is the spring alloy 3" elastic motion limitation (without deformation). But the spring travel allowed by the gear is about 4.25" plus the 1.25" pre-compression required to hold the plane empty. The springs are not difficult to replace or procure - several manufacturers can make them. Stan Montgomery gave me two replacement springs free but the new ones I ordered made of chrome-silicone alloy may last longer. Alternative titanium springs have an elastic working limit of 4.8" but fairly expensive at $600 each and still do not allow for the full 5.5" compression. AFAIK Infinity Aerospace uses total gas oleo struts which will regulate landing shock better but I suspect may need more gas charge maintenance than spring loaded oleo struts. (10/04/05) Added extra guide tubing around springs to help retain cylindrical shape when compressed and installed more firmer shocks (Gabriel G63798) with a unique valve system that dampens sudden gear motion on impact. (06/29/06) Update: It seems that the new chrome-silicon alloy springs and possibly the heavier shocks have prevented further spring sagging. Although I had a RG landing failure 04/13/06, the springs showed no signs of sagging. The new springs were purchased from Associated Spring Raymond (part No.: C200-0406-1400-01A). I recommend their service. |